
Leveraging SDN for Collaborative DDoS Mitigation
Sufian Hameed, Hassan Ahmed Khan

IT Security Labs, National University of Computer and Emerging Sciences (FAST-NUCES), Pakistan
sufian.hameed@nu.edu.pk

Abstract—In this paper we propose a collaborative distributed
denial of service (DDoS) attack mitigation scheme using SDN. We
design a secure controller-to-controller (C-to-C) protocol that al-
lows SDN-controllers lying in different autonomous systems (AS)
to securely communicate and transfer attack information with
each other. This enables efficient notification along the path of
an ongoing attack and effective filtering of traffic near the source
of attack, thus saving valuable time and network resources. We
developed and deployed a prototype of the proposed scheme in
our lab to evaluate the performance and efficiency. Based on the
experimental results we showed that our SDN based collaborative
scheme is capable of efficiently mitigating DDoS attacks in real
time with very small computational footprints.

Index Terms—DDoS, SDN, Software Defined Networking, Soft-
ware Defined Security

I. INTRODUCTION

DDoS attacks are here since the very advent of computer
networks and they are not going anywhere anytime soon.
Recently, IoT devices (such as printers, cameras, home routers
and baby monitors) were used to generate DDoS attack involv-
ing malicious DNS lookup requests from tens of millions of
IP addresses [1]. This attack is considered largest of its kind in
the history with an unprecedented rate of 1.2 Tbps. The main
target of the attack were the servers of Dyn, a company that
controls much of the Internets domain name system (DNS)
infrastructure.

Popular defense practice against DDoS is to deploy detec-
tion and response mechanisms at the destination hosts due to
higher accuracy and cheaper cost. On the downside destination
based mechanisms alone cannot mitigate attack on the paths
to the victim and waste resources. This calls for an efficient
mitigation strategy to ease out network resources along the
transit path of an attack from source to victim.

SDN bring us new approaches to deal with DDoS attacks
[7]–[10], [13]–[15]. The separation of control and data plane
in SDN allows us to write the control logic and instruct the
forwarding plane to behave accordingly. This programmability
gives us more control of the network traffic which was not
possible before the advent of SDN. In [11], Giotis et al.
proposed a DDoS mitigation scheme across multiple SDN
domains or networks1. The mitigation process starts from the
victim network and propagates along the way towards the
source. They extended the BGP protocol to embed the incident
report as URIs within BGP signals. This reliance on BGP
have some ramifications. First of all BGP is very complex and
hard to master, and any modifications to existing protocol will

1Domain(s) and Network(s) are used interchangeably throughout this paper.

challenge the deployment. Secondly, the exchange of incident
report between adjacent domains is not instantaneous and will
only take place after every BGP update interval. Therefore,
the report latency will increase with the number of hops
between the source and victim of attacks. Further, they do
not validate the authenticity of incident reports exchanged
among the adjacent SDN domains. This could make the
whole infrastructure vulnerable to fake incident reports from
malicious domains.

In this paper, we propose a lightweight, efficient and easy
to deploy collaborative DDoS mitigation scheme leveraging
SDN. We have design a secure C-to-C communication protocol
for SDN-controllers lying in different autonomous systems
(AS). This allows SDN controllers to effectively communicate
with other controllers in the neighbouring domains and inform
them about an ongoing attack. Through this approach the
SDN controllers are able to simultaneously block the mali-
cious flows within the network and inform the neighboring
domains/networks about an ongoing attack.

This way we are not only able to successfully mitigate the
DDoS attack within the victims’s network but the transmission
of attack information along the path of an attack (transit
networks) enable us to filter the DDoS attack close to the
attack sources. This results in preserving of valuable network
resources along the attack transit path.

Although push-back schemes to mitigate DDoS attack along
the attack path has been discussed in the research community
[16], [17], but they require more resources at various levels
and the push-back mechanism must be deployed in all the
participating network components (routers and switches). The
complexity and overhead because of the coordination and
communication among distributed components adds serious
management challenges. SDN based deployments on the other
hand ease the management challenges, where a single con-
troller can manage the coordination among all the network
components at the AS level. The proposed C-to-C commu-
nication protocol is flexible and it can be easily appended
with best know DDoS detection engines. Further, the protocol
itself can use different approaches for deployment. It can be
deployed in linear order, peer-to-peer or via centralized scheme
to collaboratively disseminate DDoS filtering information.

In order to assess our proposed collaborative DDoS mitiga-
tion scheme we deployed prototype testbeds in our laboratory.
The evaluation results are quite promising and demonstrate
the effectiveness, flexibility and scalability of the proposed
approach.



Fig. 1. High-level Architecture of Collaborative DDoS Framework

II. SYSTEM DESIGN AND ARCHITECTURE

Collaborative DDoS mitigation requires multiple SDN do-
mains networked together as depicted in fig. 1. Each domain
is a complete AS with egress and ingress routers. Any single
AS may comprise of multiple SDN controllers which com-
municate with each other via our proposed C-to-C protocol.
At the border of any AS sits SDN controllers that are capable
of communicating with the neighboring AS’s controllers to
transfer attack definitions2. These ASs can roughly be divided
into a Source Domain, an Intermediate Network Domains and
a Destination Domain.

The source network is the one attack traffic is initiating
from. The intermediate network(s) is comprised of multiple
SDN domains connected with each other. The destination net-
work(s) is the one victim is residing in. Attack traffic initializes
from the source domain(s). It passes through intermediate
networks to reach at the destination network.

In this paper, we have leveraged SDN to effectively mitigate
the DDoS attack closest to the source. Our primary assumption
in this work is that a detection engine will inform our SDN
controller about possible attack information based on which
we will mitigate the DDoS attack. This detection engine
may consist of very effective and sophisticated detection
mechanisms, like the one proposed in [12], which can be both
internal as well as external to the AS. In the following subsec-
tions we have discussed the internal component architecture
of the controller. Further, we have also elaborated the payload
structure of the C-to-C protocol and summarized the overall
collaborative DDoS mitigation work flow.

A. Controller-to-Controller (C-to-C) Protocol:

Figure. 2 depicts a typical packet sent from the detection
engine to the SDN controller. A typical C-to-C packet sent
by the detection engine to the SDN controller comprise of
three sections i.e data, certificate and signature. Data section
contains a list of IPs and the corresponding action needed to
be taken. Certificate section contains a certificate along with
the public key. Signature section contains a message digest
signed with the private key of the attached certificate.

1) Data Section: This section contains all the information
that needs to be communicated, which in our case are typically
a list of IPs along with their statuses. Figure. 3 shows a raw

2Attack definition, attack information and flow policy are used interchange-
ably.

Fig. 2. Payload Structure of C-to-C Protocol

Fig. 3. JSON format of C-to-C Payload with Attack Definitions

representation of the data contained in JSON format. The
JSON object is self-descriptive. We have a list of IPs that
are needed to be blocked or if an IP was previously blocked
mistakenly then the status helps in unblocking it.

2) Certificate Section: The certificate section comprise of
a certificate attached by the communicating system to authen-
ticate its legitimacy.

The idea of certificate chaining is not new and it is heavily
used in day to day communications, like in authenticating the
DNS records, in client to server communication and server
to server communication. There are two types of certification
authorities (CAs): root CA and intermediate CA. In order for a
certificate to be trusted, it must have been issued by a CA that
is included in the trusted store. In our system a trusted store
is a directory containing root or intermediate certificates and
other private keys of the user. There is no particular directory
specified in Linux for trusted store. We have created our own
in the POX controller folder.

If a certificate presented by a neighboring controller is not
issued by a trusted CA then the certificate of the issuing CA is
checked to see if the certificate of the issuing CA was issued
by a trusted CA and so on until either a trusted CA is found
(at which point signature is verified and flows are installed)
or no trusted CA can be found (at which point whole payload
is dismissed).

3) Signature Section: This section contains a message
digest signed by the private key of the certificate attached.
This helps in verifying the authenticity as well as integrity of
the attack definition and its sender.

B. Controller Modules

We have written different programs that run on POX [3]
as stand-alone modules. These modules allow the controller
to perform different functionalities such as installing flows,
listening for attack definitions from neighbouring controllers,
validating the signature of attack definitions and propagating
the attack definitions to other controllers (see fig. 4). The
modules are further discussed in the following sections.

1) Policy Listener Module: This module runs a simple
lightweight server program on the controller that listens on a
predefined port for attack definitions received from neighbor-
ing controllers. On receiving an attack definition the module
verifies the payload via Payload Validation Module using the
embedded certificate. Upon the successful verification all the
attack definitions are written on a CSV file and the l3 Learning
Module is made aware of the updated policies. The l3 Learning



Fig. 4. Component Architecture of Controller

module then refreshes the policies by installing new flows from
the updated CSV file. This module also calls the Policy Pusher
Module to forward the flows to the neighboring controller.

2) Payload Validation Module: This module validates the
certificate and verifies the signature of the payload before it
is further processed and flows are installed into the individual
nodes (i.e. switches or routers). The certificate is validated via
chain of trust. A root certificate of the CA is present in the
trusted store. Certificate is validated against the trusted CA.
Upon the successful validation of the certificate the signature
of the payload is validated for checking the integrity of the
message. The IPs contained in the payload are forwarded to
the connected nodes upon successful signature verification.

3) Policy Pusher Module: This module pushes the policies
(containing the new attack definitions) to the neighboring con-
trollers. The Policy Listener module informs the Policy Pusher
module to update the policies locally upon the successful
verification and forward the attack definitions.

4) L3 Learning Module: This module derives most of its
functionality from POX’s out of the box forwarding module
named l3 learning. It is a simple layer 3 learning module that
provides connectivity between the nodes via the nodes they are
connected with. Along with the connectivity, it installs policies
received to block the attack traffic. When ever new flows are
installed the policy listener module informs the l3 learning
module. The l3 learning module then flushes all the flows
installed on the nodes and install negative flows blocking
malicious traffic.

5) Stats collector Module: This module collects informa-
tion like number of packets/second passing through a partic-
ular domain, active flows installed in a network and traffic
passing in Mbps, .etc. This module is specifically used to
collect evaluations and results when the proposed mechanism
is deployed on several testbeds.

C. Work-flow of Inter AS Collaborative DDoS Mitigation

The complete work flow of the Collaborative DDoS miti-
gation is summarize as follows.

1) The detection engine communicates with the SDN con-
troller via C-to-C protocol and forward a list of mali-
cious IPs in the form of an attack definition.

2) The SDN controller first validates the communicating
server by going through the following steps:

a) A certificate is retrieved from the payload.

b) The Payload validation module validate the certifi-
cate via a root certificate of the issuing CA present
in the trusted store.

c) Once the certificate is authenticated via root chain-
ing, the signature of the message is validated.

d) Upon the successful validation of the signature
the payload is further processed, otherwise it is
discarded.

3) The IPs present in the payload are then written to a
policy file and L3-Learning module is informed about
the updates in the policies.

4) The L3-Learning module then reads the updated policies
from the policy file

5) The L3-Learning module then installs the new policies
on each connected node.

6) As a result of the new policies, malicious flows are
blocked. Any previously blocked flows can be allowed
depending upon the improvised detection.

7) The SDN controller then forwards the policies to the
neighboring controllers via Policy Pusher Module.

8) The neighboring SDN controllers performs the same
steps starting from step 2 to 7.

D. Protecting Controllers Against DDoS

C-to-C protocol facilitates selective communication between
authorize controllers with valid signatures on the payload. This
enables effective filtering of unnecessary traffic from unknown
source(s). Attackers can try to compromise a controller to
launch a DDoS attack on the neighboring domains, however,
compromising a legitimate controller in an ISP (or AS) is
synonymous to compromising the ISP itself. Discussion on
such attacks and its defense is beyond the scope of this paper.

III. TESTBED AND EVALUATIONS

We distribute our testbed in three different networks i.e.
Source, Intermediate and Destination network(s). We use
Mininet [2] to emulate the networks with POX [3] as the
controller platform. In our testbed, OF-switch are also used
to simulate the behavior of an edge router in an SDN network
to filter the traffic as per policy. All the Mininet instances em-
ulating different networks are connected via GRE tunneling.
The role of each network in our testbed is discussed below.

The Source network is the one that generates both legitimate
and attack traffic. We used three nodes in the source network
out of which two generate attack traffic while one node is the
legitimate one.

The Intermediate or inter-connecting networks are multiple
Mininet networks connected via GRE tunneling. They are
autonomous networks running their own topologies and also
act as the transit networks to route the traffic between source
and destination. They can be treated as different autonomous
systems within the same ISP or different ASs in different ISPs.
Since they are Mininet emulated networks they contain SDN
controllers running on POX framework.

The Destination network is also a Mininet network compris-
ing a victim node that is the destination for both legitimate and



Fig. 5. Centralized Policy Distribution

attack traffic generating from the source network(s). Initially
the destination host fulfills all the requests coming from the
source network(s) without any distinction of the legitimate and
malicious traffic. But once the destination network is made
aware of the malicious traffic, it starts blocking the malicious
traffic and subsequently inform the neighboring networks.

For most part of our evaluations (mentioned otherwise) each
node in our testbed consists of 2.60 GHz Intel core i5 CPU,
8 GB RAM, 500 GB HDD and 1 Gbps Ethernet card. We use
Scapy [4] to generate ICMP packets with varying payloads
for both attack and legitimate traffic targeted towards the
destination.

Since detection is not within the scope of our work, we have
simulated a node as a detection engine that feeds malicious
flows to the destination network in order to mitigate the attack.
It can reside in any of the above networks or it can be in
different network. Further there is no restriction that this node
should also be running within an SDN network. It can be in a
legacy network. All that is required from this node is to speak
the same C-to-C protocol as defined in the above section to
properly authenticate itself and provide the attack definitions.

A. Deployment Approaches

We used three different approaches to deploy our testbed.
The basic difference between the approaches is how the
policies (attack definitions) are distributed. These approaches
are briefly discussed as follows.

1) Linear Approach: This is the regular implementation
discussed in the above section with architectural details (fig
1). This approach comprised of all the participating networks
i.e. Source, Intermediate and Destination networks connected
with each other in linear fashion. A third party detection
engine (similar to HADEC [12]) feeds the attack definitions
into the destination network, which then forwards them to

the neighbouring network and this process continues till the
definitions reaches the source.

2) Centralized Approach: In this approach (see fig. 5)
there is one Central Control Platform that handles attack
definitions from all the connected networks. Upon successful
verification the platform then forwards the attack information
to the connected SDN controllers. The SDN controllers upon
receiving the attack definitions install the flows defined in
the policy after verification check. This approach is helpful
in preventing hop-by-hop dissemination of attack definition,
specially in scenarios where a huge amount of traffic is being
handled by SDN controllers. Moreover in this approach the
flows installed can be targeted depending upon the destination
address. As a result not every SDN network has to install
all the flows. The central approach only forwards the relevant
flows to the intended SDN controller hence saving the TCAM
memory of OpenFlow switches.

3) Mesh Approach: In this approach any single network
deploys a mesh connectivity with existing networks. This
enables any single network to forward the received attack
definitions directly to all the connected networks, instead
of pushing the attack definitions linearly one by one to its
neighboring network. This way the mitigation process is very
fast.

B. Bootstrapping

In order to effectively bootstrap the proposed scheme, we
have to consider the accessibility to neighboring controllers
and pre-hand knowledge of the CA. In case of peer-to-peer
deployment, a controller in an AS will follow the peering
agreements. Just like any edge routers are configured with the
accessibility information of neighboring AS’s edge router, the
controller’s in peer ASs will be configured with the accessibil-
ity information (IP, port). In centralized approach, the AS can
publish list of authorized controllers in the Central Control
Platform. This approach is very simple, yet very effective
and it is successfully being used by Sender Policy Framework
(SPF) [5] (an IP based email authentication mechanism with
over 7 million registered domains). The knowledge of CAs is
part of controller’s configuration, this approach is successfully
used in DNSSEC and all the browsers have pre-installed
certificates of more than 600 root CAs and 1200 intermediate
CAs.

C. Effect of Deployment Approaches on Attack Mitigation

We performed different experiments to analyze the behavior
of attack mitigation under different deployment approaches
(linear, central and mesh). We would like to emphasize that the
core focus of the proposed collaborative scheme is mitigation
of DDoS along the attack path and this scheme can be flexibly
appended with any effective detection algorithms. We got
some promising results that give us insight about the potential
problems that our proposed architecture is capable of solving.

1) Linear: For Linear approach we setup a testbed with
eight networks (one source, one destination and six interme-
diate networks) connected in a linear fashion. The choice of



Fig. 6. Mitigation Effect with Six Intermediate Networks in LAN Setting

Fig. 7. Mitigation Effect with Six Intermediate Networks in ISP Setting with
AS-AS Latency and Processing Delays

six intermediate networks give us relevant ISP settings that
would work in practice. This is because the average length
of AS paths over time, as seen by the RIPE NCC Routing
Information Service (RIS) route collectors, for IPv4 networks
is fairly stable at 4.3 hops [6].

In the experiments, the source network generates approx.
21,960 packets per second out of which only 4,392 packets are
legit and the rest of 17,568 packets are malicious. For the sake
of simplicity we have assumed that none of the intermediate
network is generating its own traffic. Hence the only traffic
passing through the intermediate networks is coming from the
source network.

For the first experiment, we used a LAN settings with no
delays between different SDN domains. Further we used attack
definition with 1K IPs to keep the processing delay minimum.
The results generated via this setup are shown in fig. 6. This
graph is between the data flowing from source to destination
and the time it takes to mitigate the attack.

At time -1 the attack is being carried out, so the amount of
traffic in all eight networks is at the maximum volume. At time
zero, our destination network receives the attack definitions
via detector node. The SDN controller at the destination node
verifies the authenticity of the attack definitions from the de-
tector node and upon success installs the flows. Due to this, we
observed a traffic drop at destination network and the number
of accepted packets are reduced to only the legitimate ones
only i.e. 4,392. At this moment the amount of packets flowing
through other networks remains the same. After installing the
flows in its own network the SDN controller at the destination
network forwards the attack definitions to the neighboring
network i.e network 1. Network 1 validates the source of

the message and installs the flows. Due to which at time
4.5 ms there is a decrease in the traffic at network 1. The
network 1 follows the same pattern and forwards the attack
definitions to its neighbor i.e. network 2. Network 2 follows
the same steps too and at time 40 ms the traffic flow drops
to normal only allowing the legitimate traffic to pass through.
This goes on till network 6 forwards the attack definition to the
source network. At time 132 ms the source network installs
the flows and the traffic drops to the legitimate traffic only.
In the end, the attack has been mitigated not only from the
destination network, but all the way to the source with the help
of collaborative propagation of the attack definitions. Here, we
also observed that the validation and processing of small size
attack definitions has trivial impact on the latency.

In our second experiment we focus on the real world
deployment aspect of an ISP settings. We added AS-to-AS
communication latency and processing delays for large size
attack definitions. For AS-to-AS communication latency we
ran traceroute for arbitrary domains and took worst case
estimates of 150 ms avg. delays using a 500 Kbps Internet
connection (to simulate low available bandwidth during an
ongoing DDoS). It took on avg. 137 ms to process a payload
containing 100K IPs (see §III-D). Here, just like the previous
setup we have one source network, one destination network
and six intermediate networks. The whole operating procedure
remains the same as thoroughly described above. The results
shown in fig. 7 resemble the pattern of fig. 6 except for the
values. The effect of mitigation is instantly transferred from
destination to the source. One thing worth noting is the amount
to time it takes to mitigate the attack completely all the way
from the destination to the source is approx. just 2141 ms or
2.14 seconds.

Larger number of Intermediate networks have proportional
increase in the mitigation time. Nevertheless, our proposed
framework and C-to-C protocol is lightweight with instanta-
neous effect. It only requires somewhere between 290 to 330
ms to process and forward attack definitions from one network
to another.

Fig. 8. Linear vs Mesh or Central: Comparison of Policy Propagation time

2) Mesh and Centralized Approach: In fully meshed and
centralized approach the controllers are directly connected
with each other. This way the attack definitions or flows are
pushed from the destination to Intermediate and source net-
works. We performed similar experiment as discussed above,
but with mesh of controllers connected with each other or
centralized way of carrying out communication the effect is



Fig. 9. Central Platform: Load testing at Varying delays

Fig. 10. Payload Processing Delays

very immediate as compared to the linear approach. Figure 8
shows immediate drop in attack traffic since the controllers
are connected directly and the flows are pushed right from the
destination or central platform to the individual networks.

D. Performance of Central Control Platform

The main idea of central control platform is to create a
trusted authority that verifies the attack definitions received
so that intermediate controllers do not have to go through the
laborious task of individually verifying and forwarding the
attack definitions. The result of this approach is quite similar to
the one achieved in Mesh approach. In this section we evaluate
the dissemination delays of the flows and the effect of payload
size on the central controller. For the performance evaluations
we used a low end machine with Intel Core i3-4010U CPU
@ 1.70GHz 4 with 4.0 GB of RAM as the central controller.

In order to evaluate the dissemination delays of attack
definitions, we generated 100 different payloads with attack
definitions and forwarded each payload to 100 connected
controllers in three different modes. i.e. Burst mode, with
100 ms delay (the delay added between two different attack
definitions), and with 500ms delay. Figure. 9 shows the results.
In burst mode i.e. with 0 delay between attack definitions, it
took approx. 28 seconds to dissipate all the flow policy to 100
connected controllers. With a delay of 100ms it took approx.
34 seconds and with a delay of 500 ms it took approximately
50 seconds.

The performance of our system also depends upon the
payload size of an attack definition which mainly consists
of malicious IP addresses. We took various payloads and
computed the time to verify and process the IPs to generate
relevant flow table entries. Figure. 10 display the effect of
increasing size of payloads. It took on average 1.8 ms to
process (verification of signature and insertion of flow table
entry) a payload containing 1K of IPs. The processing time
increases to 13 ms for payload with 10K IPs and around 137
ms to process 100K IPs.

IV. CONCLUSION

In this paper, we present a lightweight, efficient and easy
to deploy collaborative DDoS mitigation scheme leveraging
SDN. Using the proposed scheme a SDN controller in any AS
can directly communicate with the controllers in the adjacent
network via secure C-to-C protocol and inform them about an
ongoing attack. This helps in efficient propagation of attack
definitions all the way from the victim to the attack sources.
We also introduced three different deployment approaches i.e.
linear, central and mesh in our testbed and tested the overall
efficiency. The evaluation results showed that the effect of
mitigation is instantaneously transferred from destination to
source. It took around 2.14 seconds to mitigate the attack
in an eight hop linear deployment. Further, it only requires
somewhere between 290 to 330 ms to process and forward
attack definitions between adjacent networks. The processing
of attack definition payload (verification of signature and
insertion of flow table entry) is also lightweight even on low
end machines with a processing time of around 13 ms for a
payload with 10K IPs.

REFERENCES

[1] Dyn cyberattack. www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet.

[2] Mininet. www.mininet.org/.
[3] Pox controller. www.github.com/noxrepo/pox.
[4] Scapy. www.secdev.org/projects/scapy/.
[5] Sender policy framework. http://www.openspf.org/.
[6] Autonomous system path lengths. https://labs.ripe.net/Members/mirjam/update-

on-as-path-lengths-over-time, 2012.
[7] M. Belyaev and S. Gaivoronski. Towards load balancing in sdn-networks

during ddos-attacks. In Science and Technology Conference (Modern
Networking Technologies) (MoNeTeC), 2014 International, 2014.

[8] R. Braga, E. Mota, and A. Passito. Lightweight ddos flooding attack
detection using nox/openflow. In 35th IEEE Conference on Local
Computer Networks (LCN), 2010.

[9] Nhu-Ngoc Dao, Junho Park, Minho Park, and Sungrae Cho. A feasible
method to combat against ddos attack in sdn network. In International
Conference on Information Networking (ICOIN), 2015.

[10] K. Giotis, G. Androulidakis, and V. Maglaris. Leveraging sdn for
efficient anomaly detection and mitigation on legacy networks. In Third
European Workshop on Software Defined Networks, 2014.

[11] K. Giotis, M. Apostolaki, and V. Maglaris. A reputation-based collab-
orative schema for the mitigation of distributed attacks in sdn domains.
In IEEE/IFIP Network Operations and Management Symposium, 2016.

[12] S. Hameed and U. Ali. Efficacy of live ddos detection with hadoop. In
IEEE/IFIP Network Operations and Management Symposium (NOMS),
April 2016.

[13] J. Jeong, J. Seo, G. Cho, H. Kim, and J. S. Park. A framework for
security services based on software-defined networking. In Advanced
Information Networking and Applications Workshops (WAINA), 2015
IEEE 29th International Conference on, 2015.

[14] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang. A sdn-oriented
ddos blocking scheme for botnet-based attacks. In Sixth International
Conference on Ubiquitous and Future Networks (ICUFN), July 2014.

[15] Q. Yan and F. R. Yu. Distributed denial of service attacks in software-
defined networking with cloud computing. IEEE Communications
Magazine, April 2015.

[16] Xiaowei Yang, David Wetherall, and Thomas Anderson. A dos-limiting
network architecture. In ACM SIGCOMM Computer Communication
Review, volume 35. ACM, 2005.

[17] Xiaowei Yang, David Wetherall, and Thomas Anderson. Tva: a dos-
limiting network architecture. IEEE Transactions on Networking, 2008.


